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Abstract We design and analyze optimal additive and multiplicative multilevel
methods for solving H1 problems on graded grids obtained by bisection. We deal
with economical local smoothers: after a global smoothing in the finest mesh, local
smoothing for each added node during the refinement needs to be performed only for
three vertices - the new vertex and its two parent vertices. We show that our methods
lead to optimal complexity for any dimensions and polynomial degree. The theory
hinges on a new decomposition of bisection grids in any dimension, which is of inde-
pendent interest and yields a corresponding decomposition of spaces. We use the latter
to bridge the gap between graded and quasi-uniform grids, for which the multilevel
theory is well-established.
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1 Introduction

Adaptive methods are now widely used in scientific and engineering computation to
optimize the relation between accuracy and computational labor (degrees of freedom).
Standard adaptive finite element methods (AFEM) based on local mesh refinement
can be written as loops of the form

SOLVE → ESTIMATE→ MARK → REFINE. (1.1)

The module ESTIMATE determines a posteriori error estimators; we refer to [58]. The
module MARK selects elements with largest error indicators and is critical for con-
vergence and optimality of AFEM. Neither of these two procedures plays a role in
the present discussion. The module REFINE refines all marked elements and perhaps a
few more to keep mesh conformity. Of all possible refinement strategies, we are inter-
ested in bisection, a popular, elegant, and effective procedure for refinement in any
dimension [3,8,32,33,48,49,54,55]. Our goal is to design optimal multilevel solvers
that constitute the core of procedure SOLVE, and analyze them within the framework
of highly graded meshes created by bisection, from now on called bisection grids.

It is important to realize that having optimal solvers in SOLVE is crucial for the the-
ory and practice of AFEM. Convergence of adaptive loops (1.1) for dimension d > 1
started with the seminal work of Dörfler [26]. This was followed by Morin et al.
[40,41], who realized the role of data oscillation, and Mekchay and Nochetto [36],
who proved a contraction property for AFEM for general elliptic PDEs. More recently,
Binev et al. [10] proved quasi-optimal cardinality for a modified algorithm including
coarsening. Stevenson [53] was able to remove coarsening that still needs an artificial
inner loop. The most standard AFEM has been later examined by Cascón et al. [18],
who have proved a contraction property and quasi-optimal cardinality. We refer to
Nochetto et al. [42] for an introduction to the theory of adaptive finite element meth-
ods. The gap to obtaining optimal complexity is precisely having optimal solvers and
storage for adaptive bisection grids—the topic of this paper.

We consider a nested family of finite element spaces obtained by local mesh refine-
ment:

V0 ⊆ V1 ⊆ · · · ⊆ VJ = V.

A standard multilevel method contains a smoothing step on the spaces V j , j =
0, . . . , J . For graded grids obtained by AFEM, it is possible that V j results from
V j−1 by just adding few, say one, basis function. Thus smoothing on both V j and
V j−1 leads to a lot of redundancy. If we let N be the number of unknowns in the
finest space V , then the complexity of smoothing can be as bad as O(N 2). To achieve
optimal complexity O(N ), the smoothing in each space V j must be restricted to the
new unknowns and their neighbors. Such methods are referred to as local multilevel
methods [4,17]. Performing the smoothing only on the newly added nodes, the most
extreme choice, gives rise to the hierarchical basis (HB) method [6,66].

Since the literature on local multilevel methods is abundant, we restrict ourselves to
describing the papers most relevant to graded meshes. Brandt [17] proposed the multi-
level adaptive technique (MLAT) and further studied it in [4]. McCormick et al. [34,35]
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developed the fast adaptive composite grid (FAC) method, which requires exact solvers
on subdomains that are partitioned by uniform grids; hence mesh adaptivity is achieved
via superposition of tensor-product rectangular grids. Rivara [47] and Mitchell [37,38]
developed local multigrid methods on adaptive triangular grids obtained by longest
edge bisection and newest vertex bisection, respectively, for d = 2. Also for d = 2,
Bank et al. [7] proposed the red–green refinement strategy, which was implemented
in the well-known piecewise linear triangular multigrid software package (PLTMG)
of Bank [5]. For the resulting locally refined grids, Bank et al. [6] developed HB
multigrid, which is a variant of the HB preconditioner developed earlier by Yser-
entant [65]. They proved that the hierarchical basis methods are nearly optimal (up
to a logarithmic factor on the number of elements) for d = 2, and suboptimal for
d > 2. Bramble et al. [15] proposed the BPX preconditioner on both quasi-uniform
grids and locally refined grids, and showed that it is nearly optimal for any dimension
d. Oswald [44] was able to remove the logarithmic factor, and thus proved optimal
complexity of BPX preconditioner and established a similar result on locally refined
grids in [45]. Bramble and Pasciak [14] proved the optimality of multilevel algorithms
including BPX preconditioner and V-cycle multigrid methods on quasi-uniform and
locally refined grids. Dahmen and Kunoth [24] proved optimal complexity of BPX,
for graded meshes created by red–green refinement for d = 2; see also Bornemann
and Yserentant [13] for a simpler approach using a K-functor. Griebel [27,30] devel-
oped multilevel methods on adaptive sparse grids. Xu [61] introduced a unified abstract
framework for the various multilevel methods based on the method of subspace correc-
tions, which is the approach we pursue in this paper. More recently, Wu and Chen [60]
analyzed multigrid methods using Gauss-Seidel type smoothers on bisection grids gen-
erated by newest vertex bisection for d = 2. Finally, Aksoylu and Holst [2] extended
the optimality results of [24] to a practical, local red–green refinement procedure for
d = 3 due to Bornemann et al. [11].

We now summarize our four main contributions and place them in context.

• First we present a novel decomposition of bisection grids. Roughly speaking, for
any triangulation TN constructed from T0 by N bisections, we can write

TN = T0 + B, B = (b1, b2, . . . , bN ) (1.2)

where B denotes an ordered sequence of N elementary bisections bi . Each bi is
restricted to a local region, the star of the newly created vertex, and the corre-
sponding local grid is thus quasi-uniform. This decomposition induces a space
decomposition {Vi }N

i=1 of the underlying subspace of continuous piecewise linear
functions over TN . Moreover, this decomposition serves as a general bridge to
transfer results from quasi-uniform grids to graded bisection grids and has some
intrinsic interest. For example, it is this geometric structure of bisection grids that
motivates the new efficient implementation of multilevel methods developed by
Chen and Zhang [22] for d = 2 and by Chen [19] for d = 3, which avoids dealing
with the tree structure of the mesh and hinges on coarsening from the finest mesh
TN to find (1.2). Such a grid decomposition may or may not coincide with the one
giving rise to TN via AFEM, but it does not matter.
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We stress that the popularity of multilevel methods among practitioners is somehow
hampered by their complicated data structures to store and access the hierarchical
grid structure. Efficient multilevel algorithms developed in [22] and [19] require
only minimal bookkeeping (recording the two parent nodes for each new bisection
node) and a simple data structure (only the finest grid must be stored instead of
the whole refinement tree). They rely on a clever coarsening algorithm for bisec-
tion grids and exhibit both optimal storage and complexity. This paper provides a
theoretical basis for these methods and establishes their optimality.

• Second, we introduce and analyze economical local smoothers which reduce the
complexity of the resulting multilevel methods. In fact, besides a smoothing in the
finest grid TN , the local smoothing (or local relaxation) associated with each bisec-
tion bi is just performed for the newly created vertex and its two parent vertices.
This implies that dim Vi = 3, whence the total complexity is proportional to the
size of the linear system with a relatively small constant.
From the algorithmic point of view, our algorithm is different from the traditional
local multigrid, which requires smoothing for the new vertex and all neighboring
vertices (and degrees of freedom for quadratic or higher order elements) but no
additional smoothing in the finest grid. In one iteration of V-cycle or BPX pre-
conditioner, our algorithm requires less operations than the traditional one. For
example, for linear elements, treating the cost of the smoothing on one node as
a unit, our algorithm requires 4N operations while the traditional one may need
k N operations, where k is the number of neighboring nodes surrounding a node.
For bisection grids, the average of k is 5 for d = 2 and could be as high as 10
for d = 3. Furthermore our algorithm is easier to implement, especially for higher
order elements. The smoothing on the finest grid can be easily realized using Jacobi
or Gauss-Seidel methods since the matrix is given while the multilevel smooth-
ing only involves linear elements and three points. Note that the new vertex and
two parents vertices are minimal information needed, in any geometric multigrid
method, to construct the restriction and prolongation operators.
Our three-point smoother, inspired by an idea of Stevenson [52] for wavelets, can
be also thought of as an economical way to stabilize the hierarchical basis (HB)
methods for d > 2, which otherwise are known to be suboptimal. Other stabil-
ization attempts for the HB methods can be found in [56,57]. We stress that the
smoothing in the finest grid, which follows from the principle of auxiliary space
method [62], plays an important role in the stabilization.

• Third, we provide an analysis without the so-called nested refinement assumption:

!J ⊆ !J−1 ⊆ · · · ⊆ !0 = !, (1.3)

with each subdomain ! j being made of all the new elements created at the j-th
level which, therefore, were not present earlier. This also implies that all elements
contained in subdomain ! j possess the same generation j and a comparable size.
The grid corresponding to ! j is thus quasi-uniform, and local multigrid methods
can be analyzed using a truncated L2-projection [14,15].
A natural question then arises: how can we apply existing theories to bisection grids
which may not obey the nested refinement assumption (1.3)? For fully additive

123

Author's personal copy



Optimal multilevel methods for graded bisection grids

multilevel methods, e.g. the original BPX preconditioner, the ordering does not
matter in the implementation and analysis and thus we can always assume (1.3)
holds. For multiplicative methods (e.g. V-cycle multigrid or additive multilevel
method with multiplicative smoothers), further work needs to be done to apply the
existing theories.
One approach is to use the relation between the additive and the multiplica-
tive method [16,23,29]. Roughly speaking, if additive preconditioners lead to a
uniformly bounded condition number for the preconditioned system, then multipli-
cative methods converge with a rate depending at most on the number of levels J .
For quasi-uniform grids, J ≈ | log h| ≈ log N which is an acceptable factor in
practice. For bisection grids, however, the level J could be O(N ) in the worst
scenario and thus this estimate is not optimal.
When the tree structure of the local mesh refinement is available, one could recon-
struct a virtual local mesh refinement hierarchy by grouping all elements with the
same generation into one level such that the assumption (1.3) holds [11,12,31] and
implement multigrid algorithms on this virtual nested refinement. However, these
levels increase dynamically within AFEM and must be updated for every loop
(1.1). Consequently, reconstructing a virtual refinement hierarchy entails imple-
menting suitable bookkeeping data structures which might compromise optimal
storage and thus optimality.
The new algorithms [19,22], as well as [1], show that multilevel methods retain
optimality even when the nested refinement assumption (1.3) is violated or ele-
ments with disparate sizes are grouped together into one refinement patch. This
paper provides an alternative approach to analyze these more flexible algorithms.

• Four, we provide a unified framework for analysis of multilevel methods on graded
bisection grids, which is valid for any dimension d, any polynomial degree, and
minimal regularity. We should point out that Wu and Chen [60] have analyzed
multigrid methods for bisection grids and d = 2 without the nested refinement
assumption (1.3). Their proof of uniform convergence relies on the specific geo-
metric structure of bisection grids for d = 2, and its extension to d > 2 seems
rather difficult. Our approach below is conceptually simpler than [60], applies to
any dimension d as well as general smoothers, rather than just Gauss-Seidel, and
extends to BPX preconditioners. Our analysis, carried out in Sect. 2.4, hinges on
three basic properties: the contraction property (2.6) of the local (inexact) smoother,
the stability bound (1.6) of the subspace decomposition, and the strengthened
Cauchy–Schwarz inequality (1.7). The proofs of (1.6) and (1.7) are the core of this
paper and are given in Sect. 4. They heavily rely on the decomposition of bisection
grids discussed earlier in Sect. 3.

In the rest of the introduction, we briefly present the model problem and outline
our approach. Let ! ⊂ Rd , d ≥ 2 be a polyhedral domain, and consider the Dirichlet
form

a(u, v) :=
∫

!

∇u · ∇v dx .
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Given a (graded) triangulation T of !, we choose the finite element space V := {v ∈
H1

0 (!) : v|τ ∈ Pm, for all τ ∈ T }, where Pm is the space of polynomial of degree
≤ m, with an integer m ≥ 1, and let u ∈ V be the finite element solution of the second
order elliptic equation

(Au, v) := a(u, v) = 〈 f, v〉 for all v ∈ V, (1.4)

where f ∈ H−1(!), A : V → V is the discrete Laplacian, and 〈·, ·〉 is the duality
pair. For ease of exposition, we let ! be partitioned exactly into a bisection grid T ,
which is shape regular and conforming, and consider the Laplace operator.

Our analysis can be generalized to variable coefficients with small variations, in
which case the contraction factor will depend on the variations of the coefficients.
For variable coefficients, possibly with large jumps across interelement boundaries,
we refer to [21]: using local multigrid as a preconditioner of the conjugate gradient
method yields a robust method with respect to both the mesh size and the size of jump
discontinuities of the coefficients.

We now briefly discuss our approach to multilevel methods. Let {φp}p∈$ be the
canonical basis functions of the space V and let Vp = span{φp} with dim Vp = 1
for p ∈ $; thus V = span{φp}p∈$. Let Vi ⊂ V with dim Vi = 3 be the space of
piecewise linear functions spanned by the newest vertex added by each elementary
bisection bi and its two parents vertices, for i = 1, . . . , N , and let V0 be the coarsest
space of piecewise linear elements over T0. We then have the space decomposition

V =
∑

p∈$
Vp +

N∑

i=0

Vi , (1.5)

for which we shall prove the following two key properties:

• Stable Decomposition: For any v ∈ V, there exist vp ∈ Vp, p ∈ $, and vi ∈ Vi , i =
0, . . . , N such that v = ∑

p∈$ vp + ∑N
i=0 vi and

∑

p∈$
h−2

p ‖vp‖2 +
N∑

i=0

h−2
i ‖vi‖2 ! |v|21. (1.6)

• Strengthened Cauchy–Schwarz (SCS) Inequality: For any ui , vi ∈ Vi , i =
0, . . . , N , we have

∣∣∣∣∣∣

N∑

i=0

N∑

j=i+1

a(ui , v j )

∣∣∣∣∣∣
!

(
N∑

i=0

|ui |21
)1/2 (

N∑

i=1

|vi |21
)1/2

. (1.7)

Hereafter h p or hi represent local meshsizes corresponding to Vp or Vi , respectively.
With the help of (1.6) and (1.7), derived in Sect. 4, we are able to obtain optimal
multilevel methods including BPX preconditioner and V-cycle multigrid methods for
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solving the algebraic system (1.4) over graded bisection grids. We prove convergence
of these methods in Sect. 2.4.

We use standard Sobolev space notation: ‖ · ‖ denotes the L2-norm and | · |1 the
H1-semi-norm, which is a norm on H1

0 (!). We write x ! y to indicate x ≤ Cy, with
constant C independent of problem size N and functions v ∈ V , as well as x ! y to
mean x ! y and y ! x .

The rest of this paper is organized as follows. In Sect. 2, we review the subspace
correction method and provide abstract convergence analysis based on three assump-
tions: (1.6), (1.7), and (2.6) below. In Sect. 3, we discuss bisection methods and
present the crucial decomposition of bisection grids. In Sect. 4, we first obtain a space
decomposition based on the decomposition of bisection grids and next prove (1.6)
and (1.7). Finally, in Sect. 5 we summarize optimal complexity results for both local
BPX-preconditioner and V-cycle multigrid, which are valid for inexact local solvers
which induce the contraction (2.6).

2 The method of subspace corrections

Discretization of partial differential equations often leads to linear algebraic equations
of the form

Au = f, (2.1)

where A ∈ RN×N is a sparse matrix and f ∈ RN . In this section, we give some gen-
eral and basic results that will be used in later sections to construct efficient multilevel
iterative methods (such as multigrid methods) for (2.1) resulting from finite element
discretizations of elliptic partial differential equations. The presentation in this section
follows closely to Xu [61] with simplified analysis.

2.1 Iterative methods

A basic linear iterative method for Au = f can be written in the following form

uk+1 = uk + B( f − Auk),

starting from an initial guess u0 ∈ V; B is called iterator. If A = (ai j ) ∈ RN×N is
split into diagonal, lower and upper triangular parts, namely A = D + L + U , then
two classical examples are the Jacobi method B = D−1 and the Gauss-Seidel method
B = (D + L)−1.

The art of constructing efficient iterative methods lies on the design of B which
captures the essential information of A−1 and its action is easily computable. In this
context the notion of “efficiency” entails two essential requirements:

• One iteration requires a computational effort proportional to the number of
unknowns.

• The rate of convergence is well below 1 and independent of the number of unknowns.
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The approximate inverse B, when it is SPD, can be used as a preconditioner for
Conjugate Gradient (CG) method. The resulting method, known as preconditioned
conjugate gradient method (PCG), admits the following error estimate in terms of the
condition number κ(B A) = λmax(B A)/λmin(B A)

‖u − uk‖A

‖u − u0‖A
≤ 2

(√
κ(B A)− 1√
κ(B A) + 1

)k

(k ≥ 1);

B is called preconditioner. A good preconditioner should have the properties that the
action of B is easy to compute and that κ(B A) is significantly smaller than κ(A).

2.2 Space decomposition and method of subspace corrections

In the spirit of divide and conquer, we decompose the space V = ∑J
i=0 Vi as the

summation of subspaces Vi ⊂ V; {Vi }J
i=0 is called a space decomposition of V .

Since
∑J

i=0 Vi is not necessarily a direct sum, decompositions of u ∈ V of the form
u = ∑J

i=0 ui are in general not unique. The original problem (2.1) can thus be split
into sub-problems in each Vi with smaller size which are relatively easier to solve.

Throughout this paper, we use the following operators, for i = 0, 1, . . . , J :

• Qi : V → Vi the projection in the inner product (·, ·);
• Ii : Vi → V the natural inclusion which is often called prolongation;
• Pi : V → Vi the projection in the inner product (·, ·)A = (A·, ·);
• Ai : Vi → Vi the restriction of A to the subspace Vi ;
• Ri : Vi → Vi an approximation of A−1

i (often known as smoother);
• Ti : V → Vi Ti = Ri Qi A = Ri Ai Pi .

It is easy to verify the relation Qi A = Ai Pi and Qi = I t
i with (I t

i u, vi ) := (u, Iivi ).
The operator I t

i is often called restriction. If Ri = A−1
i , then we have an exact local

solver and Ti = Pi . With slightly abused notation, we still use Ti to denote the restric-
tion Ti |Vi : Vi → Vi and T−1

i = (Ti |Vi )
−1 : Vi → Vi .

For a given residual r ∈ V , we let ri = Qir = I t
i r denote the restriction of the

residual to the subspace Vi and solve the residual equation Ai ei = ri in Vi approxi-
mately

êi = Riri .

Subspace corrections êi are assembled to yield a correction in the space V , thereby
giving rise to the so-called method of subspace corrections. There are two basic ways
to assemble subspace corrections.

Parallel Subspace Correction (PSC) This method performs the correction on each
subspace in parallel. In operator form, it reads

uk+1 = uk + B( f − Auk), (2.2)

123

Author's personal copy



Optimal multilevel methods for graded bisection grids

where

B =
J∑

i=0

Ii Ri I t
i . (2.3)

The subspace correction is êi = Ii Ri I t
i ( f − Auk), and the correction in V is ê =∑J

i=0 êi . The error equation reads

u − uk+1 =
[

I −
(

J∑

i=0

Ii Ri I t
i

)

A

]

(u − uk) =
(

I −
J∑

i=0

Ti

)

(u − uk);

Successive Subspace Correction (SSC) This method performs the correction in a suc-
cessive way. In operator form, it reads

v0 = uk, vi+1 = vi + Ii Ri I t
i ( f − Avi ), i = 0, . . . , J, uk+1 = v J+1, (2.4)

and the corresponding error equation is

u − uk+1 =
[

J∏

i=0

(I − Ii Ri I t
i A)

]

(u − uk) =
[

J∏

i=0

(I − Ti )

]

(u − uk);

in the notation
∏J

i=0 ai , we assume there is a built-in ordering from i = 0 to J ,
i.e.,

∏J
i=0 ai = a0a1 . . . aJ . Therefore, PSC is an additive method whereas SSC is a

multiplicative method.
As a trivial example, we consider the space decomposition RJ = ∑J

i=1 span{ei }.
In this case, if we use exact (one dimensional) subspace solvers, the resulting SSC is
just the Gauss-Seidel method and the PSC is just the Jacobi method. More complicated
and effective examples, including multigrid methods and multilevel preconditioners,
will be discussed later on.

2.3 Sharp convergence identities

The analysis of parallel subspace correction methods relies on the following identity
which is well known in the literature [28,59,61,64].

Theorem 2.1 (Identity for PSC) If Ri is SPD on Vi for i = 0, . . . , J , then B defined
by (2.3) is also SPD on V . Furthermore

(B−1v, v) = inf∑J
i=0 vi =v

J∑

i=0

(R−1
i vi , vi ). (2.5)

On the other hand, the analysis of Successive subspace correction methods hinges
on an identity of Xu and Zikatanov [64] to be described below. First we assume that
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each subspace smoother Ri induces a convergent iteration, i.e. the error operator I−Ti
is a contraction.

(T) Contraction of Subspace Error Operator There exists ρ < 1 such that

‖I − Ti‖Ai ≤ ρ for all i = 0, 1, . . . , J. (2.6)

We associate with Ti the adjoint operator T ∗i with respect to the inner product
(·, ·)A. To deal with general, possibly non-symmetric smoothers Ri , we introduce the
symmetrization of Ti

T i = Ti + T ∗i − T ∗i Ti , for i = 0, . . . , J. (2.7)

We use a simplified version of XZ identity given by Cho, Xu, and Zikatanov [23];
see also [20].

Theorem 2.2 (Identity of SSC) If assumption (T) is valid, then the following identity
holds

∥∥∥∥∥

J∏

i=0

(I − Ti )

∥∥∥∥∥

2

A

= 1− 1
K

,

where

K = sup
‖v‖A=1

inf∑J
i=0 vi =v

J∑

i=0

(
T
−1
i (vi + T ∗i wi ), vi + T ∗i wi

)

A
, (2.8)

with wi = ∑
j>i v j .

When we choose exact local solvers, i.e., Ri = A−1
i and consequently Ti = Pi for

i = 0, . . . , J , (T) holds with ρ = 0. Therefore we have a more concise formulation
for such choice [64].

Corollary 2.3 (Identity of SSC with exact solver) One has the following identity

∥∥∥∥∥

J∏

i=0

(I − Pi )

∥∥∥∥∥

2

A

= 1− 1
1 + c0

,

where

c0 = sup
‖v‖A=1

inf∑J
i=0 vi =v

J∑

i=0

∥∥∥∥∥∥
Pi

N∑

j=i+1

v j

∥∥∥∥∥∥

2

A

. (2.9)
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2.4 Convergence analysis

We now present a convergence analysis based on three assumptions: (T) on Ti and
the two ones below on the space decomposition. The analysis here is adapted from
Xu [61] and simplified by using the XZ identity.

(A1) Stable Decomposition For any v ∈ V , there exists a decomposition v =∑J
i=0 vi , vi ∈ Vi , i = 0, . . . , J such that

J∑

i=0

‖vi‖2A ≤ K1‖v‖2A. (2.10)

(A2) Strengthened Cauchy Schwarz (SCS) Inequality For any ui , vi ∈Vi , i = 0, . . . , J

∣∣∣∣∣∣

J∑

i=0

J∑

j=i+1

(ui , v j )A

∣∣∣∣∣∣
≤ K2

(
J∑

i=0

‖ui‖2A
)1/2 (

J∑

i=0

‖vi‖2A
)1/2

. (2.11)

Theorem 2.4 (Multilevel preconditioning) Let V = ∑J
i=0 Vi be a space decomposi-

tion satisfying assumptions (A1) and (A2), and let Ri be SPDs for i = 0, . . . , J such
that

K−1
4 ‖ui‖2A ≤ (R−1

i ui , ui ) ≤ K3‖ui‖2A. (2.12)

Then B defined by (2.3) is SPD and

κ(B A) ≤ (1 + 2K2)K1 K3 K4. (2.13)

Proof Let v = ∑J
i=0 vi be a decomposition satisfying (2.10). It follows from the

identity (2.5), and the definitions (2.10) of K1 and (2.12) of K3, that

(B−1v, v) ≤
J∑

i=0

(R−1
i vi , vi ) ≤ K3

J∑

i=0

‖vi‖2A ≤ K1 K3‖v‖2A = K1 K3(Av, v),

which implies

λmin(B A) ≥ (K1 K3)
−1. (2.14)
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For any decomposition v = ∑J
i=0 vi , in view of (2.11) and (2.12), we have

(Av, v) ≤
J∑

i=0

(vi , vi )A + 2

∣∣∣∣∣∣

J∑

i=0

J∑

j=i+1

(vi , v j )A

∣∣∣∣∣∣

≤ (1 + 2K2)

J∑

i=0

‖vi‖2A ≤ (1 + 2K2)K4

J∑

i=0

(R−1
i vi , vi ).

Taking the infimum and using again (2.5), we get

(Av, v) ≤ (1 + 2K2)K4 inf∑J
k=0 vi =v

J∑

i=0

(R−1
i vi , vi ) = (1 + 2K2)K4(B−1v, v),

which implies

λmax(B A) ≤ (1 + 2K2)K4. (2.15)

The estimate (2.13) then follows from (2.14) and (2.15). 01

Lemma 2.5 (Estimate of eigenvalues of T
−1
i ) If (T) holds, then T i is non-singular

and

1 ≤ λmin(T
−1
i ) ≤ λmax(T

−1
i ) ≤ 1

1− ρ2 . (2.16)

Proof The estimates follow easily by (2.6) and the definition of T i , which satisfies

I − T i = (I − T ∗i )(I − Ti ) = (I − Ti )
∗(I − Ti ). (2.17)

We omit the details. 01

Theorem 2.6 (Convergence of SSC) Let V = ∑J
i=0 Vi be a space decomposition

satisfying assumptions (A1) and (A2), and let the subspace smoothers Ti satisfy (T).
We then have

∥∥∥∥∥

J∏

i=0

(I − Ti )

∥∥∥∥∥

2

A

≤ 1− 1− ρ2

2K1(1 + (1 + ρ)2 K 2
2 )

.

Proof We shall give an upper bound of the constant K in Theorem 2.2 by choosing a
stable decomposition v = ∑

i vi satisfying (2.10). By the inequality 2ab ≤ a2 + b2,
we have

2(T
−1
i vi , T ∗i wi )A ≤ (T

−1
i vi , vi )A + (T

−1
i T ∗i wi , T ∗i wi )A, (2.18)
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where w j = ∑
j>i v j . Therefore we only need to estimate the two terms on the right

hand side of (2.18).
Using the eigenvalue estimate of T

−1
i in Lemma 2.5, together with (2.10), we arrive

at

J∑

i=0

(T
−1
i vi , vi )A ≤

J∑

i=0

λmax(T
−1
i )‖vi‖2A ≤

K1

1− ρ2 ‖v‖
2
A. (2.19)

To estimate the second term in (2.18), we use the SCS estimate (2.11) to get

J∑

i=0

(T
−1
i T ∗i wi , T ∗i wi )A =

J∑

i=0

J∑

j=i+1

(Ti T
−1
i T ∗i wi , v j )A

≤ K2

(
J∑

i=0

‖Ti T
−1
i T ∗i wi‖2A

)1/2 (
J∑

i=0

‖vi‖2A
)1/2

.

Since ‖Ti‖Ai = ‖T ∗i ‖Ai ≤ 1 + ρ and ‖T−1
i ‖Ai = λmax(T

−1
i ) ≤ 1

1−ρ2 , we deduce

‖Ti T
−1
i T ∗i wi‖A ≤ ‖Ti‖Ai ‖T

−1
i ‖Ai ‖T ∗i ‖Ai ‖wi‖A ≤

1 + ρ

1− ρ
‖wi‖A.

Now using the SCS estimate (2.11) again, we get

J∑

i=0

(wi , wi )A =
J∑

i=0

J∑

j=i+1

(wi , v j )A ≤ K2

(
J∑

i=0

‖wi‖2A
)1/2 (

J∑

i=0

‖vi‖2A
)1/2

,

which leads to

J∑

i=0

‖wi‖2A ≤ K 2
2

J∑

i=0

‖vi‖2A.

Consequently,

J∑

i=0

(T
−1
i T ∗i wi , T ∗i wi )A ≤ K 2

2
1 + ρ

1− ρ

J∑

i=0

‖vi‖2A ≤ K1 K 2
2

1 + ρ

1− ρ
‖v‖2A. (2.20)

Inserting (2.18), (2.19), and (2.18) into (2.8), we get the upper bound of K ≤
2K1

(
1 + (1 + ρ)2 K 2) /(1 − ρ2). Finally, the desired contraction estimate follows

from Theorem 2.2. 01

When we use exact local solvers Ri = A−1
i , we have a simpler proof and sharper

estimate.
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Corollary 2.7 Let the space decomposition satisfy (A1) and (A2), and let Ri = A−1
i

for all i . Then

∥∥∥∥∥

J∏

i=0

(I − Pi )

∥∥∥∥∥

2

A

≤ 1− 1

1 + K1 K 2
2
.

Proof We apply (2.11) with ui = Pi
∑J

j=i+1 v j to obtain

J∑

i=0

‖ui‖2A =
J∑

i=0



ui , Pi

J∑

j=i+1

v j





A

=
J∑

i=0

J∑

j=i+1

(ui , v j )A

≤ K2

(
J∑

i=0

‖ui‖2A
)1/2 (

J∑

i=0

‖vi‖2A
)1/2

.

Consequently, if v = ∑J
k=0 vk is a stable decomposition satisfying (2.10), we get

J∑

i=0

∥∥∥∥∥∥
Pi

J∑

j=i+1

v j

∥∥∥∥∥∥

2

A

=
J∑

i=0

‖ui‖2A ≤ K 2
2

J∑

i=0

‖vi‖2A ≤ K1 K 2
2‖v‖2A,

which implies c0 ≤ K 2
2 K1. The desired result then follows from Corollary 2.3. 01

3 Bisection methods

We now discuss bisection methods for simplicial grids for d ≥ 2, following [42,53],
and present a novel decomposition of conforming meshes obtained by bisection. We
do not discuss the alternative refinement method, called regular refinement, which
divides one simplex into 2d children; see [7,24] for d = 2 and [1,11] for d = 3.

3.1 Bisection rules

Given a simplex τ , we assign one of its edges as the refinement edge of τ . Starting
from an initial triangulation T0, a bisection method consists of the following rules:

R1. Assign refinement edges for each element τ ∈ T0 (initial labeling);
R2. Divide a simplex into two simplices by joining the midpoint of its refinement

edge with its vertices other than those in the refinement edge (bisection);
R3. Assign refinement edges to the two children of a bisected simplex (labeling).

There are several bisection methods proposed for d ≥ 3 [3,8,32,33,46,54], which
generalize the newest vertex bisection [37] and longest edge bisection [48] for d = 2.
We now give a mathematical description based on Kossaczky [32], Traxler [55], and
Stevenson [54]. For each simplex τ , rules R1-3 associate a unique refinement edge e.
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The pair (τ, e) is called labeled simplex, and (T ,L) := {(τ, e) : τ ∈ T } is called
labeled triangulation. A d-simplex τ is a set of d + 1 ordered vertices {xi }d

i=0 and
type t :

τ = {x0, x1, . . . , xd}, t ∈ {0, 1, . . . , d}.

We let e = x0xd be the refinement edge, and let x̄ = 1
2 (x0 + xd) be the midpoint of e.

The two children τ1, τ2 of τ are the simplices obtained by joining x̄ with the vertices
of τ other than x0, xd . Ordering the vertices of the children, or equivalently labeling
them, is a crucial process that includes R2-3. We consider the following rule R3:

τ1 := {x0, x̄, x1, . . . , xt︸ ︷︷ ︸
→

, xt+1, . . . , xd−1︸ ︷︷ ︸
→

}(t+1)mod d ,

τ2 := {xd , x̄, x1, . . . , xt︸ ︷︷ ︸
→

, xd−1, . . . , xt+1︸ ︷︷ ︸
←

}(t+1)mod d ,
(3.1)

with the convention that arrows point in the direction of increasing indices and
{x1, . . . , x0} = ∅, {xd , . . . , xd−1} = ∅. For d = 2 rule R3 does not depend on the
element type and we get for τ = {x0, x1, x2} the two children τ1 = {x0, x̄, x1}, τ2 =
{x2, x̄, x1}. Moreover, the refinement edge of the two children is opposite to the new
vertex x̄ , whence this procedure coincides with the newest vertex bisection method.
We refer to the survey [42, Sect. 4] for a discussion for d ≥ 2, and stress that once
rule R1 is settled, then the subsequent labeled grids are uniquely defined.

For a labeled triangulation (T ,L), and τ ∈ T , a bisection bτ : {(τ, e)} →
{(τ1, e1), (τ2, e2)} is a map that encodes the above procedure. We next define the
formal addition as follows:

T + bτ := (T ,L)\{(τ, e)} ∪ {(τ1, e1), (τ2, e2)}.

For an ordered sequence of bisections B = (bτ1 , bτ2 , . . . , bτN ), we define

T + B := ((T + bτ1) + bτ2) + · · · + bτN ,

whenever the addition is well defined (i.e. τi should exists in the previous labeled
triangulation). These additions are a convenient mathematical description of bisection
on triangulations.

Given an initial grid T0 of ! and rules R1-3, we define the sets

G(T0) = {T : there exists a bisection sequence B such that T = T0 + B},
T(T0) = {T ∈ G(T0) : T is conforming}.

Therefore G(T0) contains all (possibly nonconforming) grids obtained from T0 using
the bisection method, which are uniquely defined once the rules R1-3 have been set,
whereas T(T0) is the subset of conforming grids.
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It is essential for the discussion to define the sequence of uniformly refined meshes
{T k}∞k=0 by:

T k := T k−1 + {bτ : τ ∈ T k−1}, for k ≥ 1,

with T 0 := T0. This means that T k is obtained by bisecting all elements in T k−1 only
once. Note that T k ∈ G(T0) but not necessarily in T(T0).

We thus consider bisection methods which satisfy the following two assumptions:

(B1) Shape Regularity: G(T0) is shape regular.
(B2) Conformity of Uniform Refinement: T k ∈ T(T0), i.e. T k is conforming, for all

k ≥ 0.

With the specific rule (3.1), due to [32,54,55], we see that the type t increases by 1
and the vertex ordering changes with t , which in turn implies that after d recurrent
bisections of a simplex τ all its edges are bisected. This leads to a fixed number of
similarity classes of elements, depending only on T0, and thus B1 holds for any d. We
refer to [42] for a thorough discussion.

We recall that for d = 2, rule (3.1) reduces to the newest vertex bisection, in which
case Sewell [51] showed that all the descendants of a triangle in T0 fall into four
similarity classes and hence (B1) holds. Note that (B2) may not hold for an arbitrary
rule R1, namely the refinement edge for elements in the initial triangulation cannot be
selected freely. Mitchell [37] came up with a rule R1 for which (B2) holds. He proved
the existence of such initial labeling scheme (so-called compatible initial labeling),
and Biedl et al. [9] gave an optimal O(N ) algorithm to find a compatible initial labeling
for a triangulation with N elements. In summary, for d = 2, newest vertex bisection
with compatible initial labeling is a bisection method which satisfies (B1) and (B2).

Enforcing (B2) for d > 2 requires also a labeling of the initial mesh T0, for which
there is no constructive procedure. The algorithms proposed by Kossaczký [32] for
d = 3 and Stevenson [54] for d ≥ 3 enforce such initial labeling upon further
refining every element of the initial triangulation, which deteriorates the shape regu-
larity. Although (B2) imposes a severe restriction on the initial labeling, we emphasize
that it is also used to prove the optimal cardinality of adaptive finite element meth-
ods [18,42,53]. Finding conditions weaker than (B2) is a challenging open problem.

3.2 Compatible bisections

We denote by N (T ) the set of vertices of the triangulation T and by E(T ) the set of
all edges of T . By convention, all simplices are closed sets. For a vertex x ∈ N (T )

or an edge e ∈ E(T ), we define the first ring (or the star) of x or e to be

Rx = {τ ∈ T | x ∈ τ }, Re = {τ ∈ T | e ⊂ τ },
and the local patch of x or e as ωx = ∪τ∈Rx τ, and ωe = ∪τ∈Reτ. Note that ωx and
ωe are subsets of !, while Rx and Re are subsets of T which can be thought of as
triangulations of ωx and ωe, respectively. We indicate with #S the cardinality of a set S.

Given a labeled triangulation (T ,L), an edge e ∈ E(T ) is called a compatible edge
if e is the refinement edge of τ for all τ ∈ Re. For a compatible edge e, the ring Re
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Fig. 1 Two compatible bisections for d = 2. Left interior edge; right boundary edge. The edge with
boldface is the compatible refinement edge, and the dash-line represents the bisection

(a) (b)

Fig. 2 A compatible bisection for d = 3: the edge e (in bold) is the refinement edge of all elements in the
patch ωe . Connecting the midpoint p of e to the other vertices bisects each element of the compatible ring
Re and keeps the mesh conforming without spreading refinement outside ωe . This is an atomic operation

is called a compatible ring, and the patch ωe is called a compatible patch. Let x be
the midpoint of a compatible edge e and Rx be the ring of x in T + {bτ : τ ∈ Re}.
A compatible bisection is a mapping be : Re → Rx . We then define the addition

T + be := T + {bτ : τ ∈ Re} = T \Re ∪Rx .

Note that if T is conforming, then T + be is conforming for a compatible bisection
be, whence compatible bisections preserve conformity of triangulations and are thus a
fundamental concept both in theory and practice. For a compatible bisection sequence
B = (bi )

J
i=0, the addition T0 +B is defined recursively Ti = Ti−1 + bi for 1 ≤ i ≤ J .

In two dimensions, a compatible bisection be has only two possible configurations;
see Fig. 1. The first one corresponds to bisecting an interior compatible edge, in which
case the patch ωe is a quadrilateral. The second case corresponds to bisecting a bound-
ary edge, which is always compatible, and ωe is a triangle. In three dimensions, the
configuration of compatible bisections depends on the initial labeling; see Fig. 2 for a
simple case.

The bisection of paired triangles was first introduced by Mitchell for dimension d =
2 [37,38]. The idea was generalized by Kossaczký [32] to d = 3, and Maubach [33] and
Stevenson [54] to d ≥ 2. In the aforementioned references, efficient recursive comple-
tion procedures of bisection methods are introduced based on compatible bisections.
We use them to characterize the conforming mesh obtained by bisection methods.

3.3 Decomposition of bisection grids

We now present a decomposition of meshes in T(T0) using compatible bisections,
which will be instrumental later.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Decomposition of a bisection grid for d = 2: Each frame displays a mesh Ti+k = Ti +
(bi+1, . . . , bi+k ) obtained from Ti by a sequence of compatible bisections (b j )

i+k
j=i+1 using the longest

edge. The order of bisections is irrelevant within each frame, but matters otherwise

Theorem 3.1 (Decomposition of bisection grids) Let T0 be a conforming triangula-
tion. Suppose the bisection method satisfies assumption (B2), i.e., for all k ≥ 0 all
uniform refinements T k of T0 are conforming. Then for any T ∈ T(T0), there exists
a compatible bisection sequence B = (b1, b2, . . . , bN ) with N = #N (T )− #N (T0)

such that

T = T0 + B. (3.2)

We prove this result later in this section. We now use the example in Fig. 3 to
illustrate the decomposition of a bisection grid. In Fig. 3a, we display the initial tri-
angulation T0 which uses the longest edge as the refinement edge for each triangle.
We display the fine grid T ∈ T(T0) in Fig. 3f. In Fig. 3b–e, we give several interme-
diate triangulations during the refinement process: each triangulation is obtained by
performing several compatible bisections on the previous one. Each compatible patch
is indicated by a gray region and the new vertices introduced by bisections are marked
by black dots.

To prove Theorem 3.1, we introduce the generation of elements and vertices. The
generation of each element in the initial grid T0 is defined to be 0, and the generation
of an element τ ∈ G(T0) is 1 plus that of the father. Therefore, gτ coincides with the
number of bisections needed to create τ from T0, and the uniformly refined mesh T k
can be characterized as the triangulation in G(T0) with all its elements of the same
generation k. Vice versa, an element τ with generation k can exist in T j only for j = k.
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Let N(T0) = ∪{N (T ) : T ∈ G(T0)} denote the set of all possible vertices. For any
vertex p ∈ N(T0), the generation gp of p is defined as the minimal integer k such that
p ∈ N (T k).

The following properties about the generation of elements or vertices for uniformly
refined meshes T k are a consequence of the definition above:

τ ∈ T k if and only if gτ = k; (3.3)

p ∈ N (T k) if and only if gp ≤ k; (3.4)

for τ ∈ T k, max
q∈N (τ )

gq = k = gτ , (3.5)

where N (τ ) is the set of vertices of τ ∈ T k .

Lemma 3.2 (Maximal generation) Let T0 be a conforming triangulation. Let the
bisection method satisfy assumption (B2). For any T ∈ T(T0), let p ∈ N (T ) be
a vertex with maximal generation in the sense that gp = maxq∈N (T ) gq . Then, all
elements in Rp have the same generation gp, namely,

gτ = gp for all τ ∈ Rp, (3.6)

Rp = Rk,p, (3.7)

where k = gp and Rk,p is the first ring of p in the uniformly refined mesh T k .

Proof We prove (3.6) by showing gp ≤ gτ and gτ ≤ gp. Since T is conforming, p
is a vertex of each element τ ∈ Rp. This implies that p ∈ N (T gτ ) and thus gτ ≥ gp
by (3.4). On the other hand, from (3.5), we have

gτ = max
q∈N (τ )

gq ≤ max
q∈N (T )

gq = gp, for all τ ∈ Rp.

Now we prove (3.7). By (3.3), Rk,p is made of all elements with generation k
containing p. By (3.6), we conclude Rp ⊆ Rk,p. The fact that p cannot belong to the
domain !\ωp, because of the topology of ωp, implies Rk,p\Rp = ∅. This proves
(3.7). 01

Now we are in the position to prove Theorem 3.1.

Proof of Theorem 3.1 We prove the result by induction on N = #N (T ) − #N (T0).
Nothing needs to be proved for N = 0. Assume that (3.2) holds for N .

Let T ∈ T(T0) with #N (T )− #N (T0) = N + 1. Let p ∈ N (T ) be a vertex with
maximal generation, i.e., gp = maxq∈N (T ) gq . Then by Lemma 3.2, we know that
Rp = Rk,p for k = gp. Now by assumption (B2), Rk,p is created by a compatible
bisection, say

be : Re → Rk,p,
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with e ∈ E(T k−1). Since the compatible bisection giving rise to p is unique within
G(T0), it must thus be be. This means that if we undo the bisection operation, then we
still have a conforming mesh T ′, or equivalently T = T ′+ be. We can now apply the
induction assumption to T ′ ∈ T(T0) with #N (T ′)−#N (T0) = N to finish the proof.

01

3.4 Generation of compatible bisections

For a compatible bisection bi ∈ B, we use the same subscript i to denote related
quantities such as:

• ei : the refinement edge;
• pi : the midpoint of ei ;
• ω̃i = ωpi ∪ ωpli

∪ ωpri
;

• Ti = T0 + (b1, . . . , bi );

• ωi : the patch of pi i.e. ωpi ;
• pli , pri : two end points of ei ;
• hi : the local mesh size of ωi ;
• Ri : the first ring of pi in Ti .

We understand h ∈ L∞(!) as a piecewise constant mesh-size function, i.e., hτ =
diam(τ ) in each simplex τ ∈ T .

Lemma 3.3 (Compatibility and generation) If bi ∈ B is a compatible bisection, then
all elements of Ri have the same generation gi .

Proof Let pi ∈ N (Ti )be the vertex associated with bi . LetTi be the coarsest uniformly
refined mesh containing pi , so k = gpi . In view of assumption (B2), pi arises from
uniform refinement of T k−1. Since the bisection giving rise to pi is unique within
F(T0), we realize that all elements in Rei are bisected and have generation k − 1
because they belong to T k−1. This implies that all elements of Rpi have generation
k, as asserted. 01

This lemma enables us to introduce the concept of generation of compatible bisec-
tions. For a compatible bisection bi : Rei → Rpi , we define gi = g(τ ), τ ∈ Rpi .
Throughout this paper we always assume h(τ ) ! 1 for τ ∈ T0. We thus have the
following important relation between generation and mesh size

hi ! γ gi , with γ =
(

1
2

)1/d

∈ (0, 1). (3.8)

Besides this relation, we give now two more important properties on the generation
of compatible bisections. The first property says that different bisections with the same
generation have weakly disjoint local patches.

Lemma 3.4 (Nonoverlapping patches) Let TN ∈ T(T0) be TN = T0 + B, where B is
a compatible bisection sequence B = {b1, . . . , bN }. For any i 7= j and g j = gi , we
have

◦
ωi ∩

◦
ω j= ∅. (3.9)
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Proof Since gi = g j = g, both bisection patches Ri and R j belong to the uniformly
refined mesh T g . If (3.9) were not true, then there would exists τ ∈ Ri ∩R j ⊂ T g
containing distinct refinement edges ei and e j because i 7= j . This contradicts rules
R2 and R3 which assign a unique refinement edge to each element. 01

A simple consequence of (3.9) is that, for all u ∈ L2(!) and k ≥ 1,

∑

gi =k

‖u‖2ωi
≤ ‖u‖2!, and (3.10)

∑

gi =k

‖u‖2ω̃i
! ‖u‖2!. (3.11)

The second property is about the ordering of generations. For a given bisection
sequence B, we define bi < b j if i < j , which means bisection bi is performed
before b j . The generation sequence (g1, . . . , gN ), however, is not necessary mono-
tone increasing; there could exist bi < b j but gi > g j . This happens for bisections
driven by a posteriori error estimators in practice. Adaptive algorithms usually refine
elements around a singularity region first, thereby creating many elements with large
generations, and later they refine coarse elements away from the singularity. This
mixture of generations is the main difficulty for the analysis of multilevel methods on
adaptive grids. We now prove the following quasi-monotonicity property of genera-
tions restricted to a fixed bisection patch.

Lemma 3.5 (Quasi-monotonicity) Let TN ∈ T(T0) be TN = T0 + B, where B =
(b1, . . . , bN ) is a compatible bisection sequence. For any j > i and

◦
ω̃ j ∩

◦
ω̃i 7= ∅,

we have

g j ≥ gi − g0, (3.12)

where g0 > 0 is an integer depending only on the shape regularity of T0.

Proof Since
◦
ω̃ j ∩

◦
ω̃i 7= ∅, there must be elements τ j ∈ Rp j ∪ Rpl j

∪ Rpr j
and

τi ∈ Rpi ∪Rpli
∪Rpri

such that
◦
τ j ∩

◦
τi 7= ∅. Since we consider triangulations in

T(T0), the intersection τ j ∩ τi is still a simplex. When b j is performed, only τ j exists
in the current mesh. Thus τ j = τ j ∩ τi ⊆ τi and gτ j ≥ gτi .

Shape regularity implies the existence of a constant g0 only depending on T0 such
that

g j + g0/2 ≥ gτ j ≥ gτi ≥ gi − g0/2,

and (3.12) follows. 01

A key practical issue is to find a decomposition of a bisection grid. We refer to
Chen and Zhang [22] and Chen [19] for a vertex-oriented coarsening algorithm and
the application to multilevel preconditioners and multigrid methods.
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4 Space decomposition on bisection grids

We give a space decomposition for Lagrange finite element spaces on bisection grids.
Given a conforming mesh T of the domain ! ⊂ Rd and an integer m ≥ 1, the m-th
order finite element space on T is defined as follows:

V(Pm, T ) := {v ∈ H1
0 (!) : v|τ ∈ Pm for all τ ∈ T }.

We restrict ourselves to bisection grids in T(T0) satisfying (B1) and (B2). Therefore
by Theorem 3.1, for any TN ∈ T(T0), there exists a compatible bisection sequence
B = (b1, . . . , bN ) such that

TN = T0 + B.

We give a decomposition of the finite element space V := V(Pm, TN ) using this
decomposition of TN . If Ti = T0 +{b1, . . . , bi }, let φi,p ∈ V(P1, Ti ) denote the linear

nodal basis at a vertex p ∈ N (Ti ). Let
◦

N (Ti ) denote the set of interior vertices of the
triangulation Ti . We define the sub-spaces

V0 := V(P1, T0), and Vi := span{φi,q : q ∈ {pi , pli , pri }∩
◦

N (Ti )}. (4.1)

Since the basis functions of Vi , i = 0, . . . , N , are piecewise linear polynomials on
TN , we know Vi ⊆ V . Let {φp : p ∈ $} be a basis of V(Pm, TN ) such that v =∑

p∈$ v(p)φp for all v ∈ V(Pm, TN ), where $ is the set of indices. For example, for
quadratic element spaces, $ consists of interior vertices and middle points of interior
edges. We define Vp = span{φp} and end up with the following space decomposition:

V =
∑

p∈$
Vp +

N∑

i=0

Vi . (4.2)

The space decomposition (4.2) can be thought of as a decomposition into frequen-
cies. The local mesh sizes hi and h p are the “wave lengths”. In each subspace Vi , the
energy norm is equivalent to a scaling of the L2-norm:

h−2
i ‖vi‖2 ! ‖vi‖A = |vi |1 ! h−2

i ‖vi‖2, for all vi ∈ Vi , i = 0, . . . , J ; (4.3)

the same holds for functions in Vp. The first inequality is just a scaled Poincaré
inequality since Vi ⊂ H1

0 (ω̃i ). The second inequality in (4.3) is the well known
inverse inequality for finite element functions.

We next verify that the space decomposition (4.2) satisfies the assumptions (A1)
and (A2).
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4.1 Stable decomposition: proof of (1.6)

The purpose of this section is to discuss and give a full proof of the following
decomposition.

Theorem 4.1 (Space decomposition over graded meshes) For any v ∈ V, there exist
vp, p ∈ $, and vi ∈ Vi , i = 0, . . . , N such that v = ∑

p∈$ vp + ∑N
i=0 vi and

∑

p∈$
‖vp‖2A +

N∑

i=0

‖vi‖2A ! ‖v‖2A. (4.4)

An important ingredient of the proof is to use the Scott-Zhang quasi-interpolation
operator [50]

IT : H1
0 (!) :→ V(P1, T )

for a conforming triangulation T ; see also Oswald [45]. For any interior vertex p ∈
◦

N
(T ), we choose a τp ⊂ Rp. Let {λτp,i : i = 1, . . . , d + 1} be the barycentric coordi-
nates of τp which span P1(τp). We construct the L2-dual basis *(τp) = {θτp,i : i =
1, . . . , d + 1} of {λτp,i : i = 1, . . . , d + 1}. If θp ∈ *(τp) is the dual basis function
so that

∫
τp

θpv dx = v(p), for all v ∈ P1(τp), we then define

IT v =
∑

p∈
◦

N (T )




∫

τp

θpv dx



 φp,

and note that IT v(p) =
∫
τp

θpv ! h−2
p ‖v‖τp . The operator IT preserves homo-

geneous Dirichlet conditions as well as the space of piecewise linear functions, and
satisfies the following estimate and stability [45,50]

|IT v|1 + ‖h−1(v − IT v)‖ ! |v|1, (4.5)

hd
i |IT v(pi )|2 ! ‖v‖2τpi

, (4.6)

with hi the size of τpi .
Given v ∈ V(Pm, TN ), we let u = IN v and decompose v = u + (v − u), where

IN : V(Pm, TN )→ V(P1, TN ) is the Scott-Zhang operator. We next give a multilevel
decomposition of u using a sequence of quasi-interpolations of Scott-Zhang type

Ji : V(P1, TN )→ V(P1, Ti ), for i = 0 : N .

First, we let J0 : V(P1, TN ) → V0 be a quasi-interpolation operator with values in
the coarsest space V0. If we already have Ji−1 : V(P1, TN )→ V(P1, Ti−1), we recall
that Ti = Ti−1 + bi and exploit the fact that the bisection bi only changes the local
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(a) (b)

(d)(c)

Fig. 4 Update of nodal values Ji−1u to yield Ji u: the element τp chosen to perform the averaging that
gives (Ji u)(p) must belong to ωp(Ti ). This implies (Ji − Ji−1)u(p) 7= 0 possibly for p = pi , pli , pri
and = 0 otherwise, and τp belongs to ωi (the patch of pi in Ti )

patches of the two end points of the refinement edge ei ∈ E(Ti−1). We then define

Ji u(pi ) at the newly added vertex pi ∈
◦

N (Ti ) using a simplex τi newly created by
the bisection bi , namely τi ⊂ ωi . If p is any other vertex and τp ∈ Ti−1 is the simplex
used to define Ji−1u(p), then we define Ji u(p) according to the following rules:

1. if τp ⊂ ωp(Ti ) we keep the nodal value, i.e., Ji u(p) = Ji−1u(p);
2. otherwise we choose a new τp ⊂ ωp(Ti )∩ωp(Ti−1) to define Ji u(p) =

∫
τp

θpu.

This construction guarantees that, in either case, the simplex τp satisfies (see Fig. 4
for d = 2)

τp ⊂ ωp(Ti ) for all p ∈
◦

N (Ti ). (4.7)

Moreover, the slicing operator Ji − Ji−1 verifies the crucial property

vi := (Ji − Ji−1)u ∈ Vi for all 1 ≤ i ≤ N , (4.8)

because (Ji − Ji−1)u(p) = 0 for p ∈
◦

N (Ti ), p 7= pi , pli or pri . Furthermore a
closer look reveals that

if (Ji − Ji−1)u(p) 7= 0, then the elements τp used to define both Ji (p)

or Ji−1(p) are inside the patch ωi of pi in Ti . Fig. 4 depicts four possible
configurations for d = 2.

(4.9)

We stress that, in general JN u 7= u = IN v because the simplex used to define
nodal values of JN u may not be in the finest mesh TN but in TN−1 instead (see Fig. 4d).
Nevertheless, the difference v−JN u = (u−JN u) + (v− u) is of high frequency in
the finest mesh TN . We will exploit this fact.
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Let v − JN u = ∑
p∈$ vp be the nodal basis decomposition in TN . We then write

v =
∑

p∈$
vp +

N∑

i=0

vi , vi ∈ Vi , (4.10)

where vi = (Ji − Ji−1)u and for convenience we define J−1u := 0; thus JN u =∑N
i=0 vi .
To prove that the decomposition (4.10) is stable we first study the high frequency

component
∑

p∈$ vp. According (4.5) and (4.7), we get

∑

p∈$
h−2

p ‖vp‖2 ! ‖h−1(v − JN u)‖2

! ‖h−1(v − IN v)‖2 + ‖h−1(u − JN u)‖2 ! |v|21. (4.11)

We next prove that the decomposition JN u = ∑N
i=0(Ji−Ji−1)u is stable. For this

purpose, we consider an auxiliary decomposition over uniformly refined meshes T k
of T0, and denote by Vk = V(P1, T k) for 0 ≤ k ≤ L . We choose L = maxτ∈TN gτ

so that V(P1, TN ) ⊆ VL and state the following well-known stable decomposition for
the space VL = ∑L

k=0 Vk [13,43,44,61].

Lemma 4.2 (Stable decomposition for quasi-uniform meshes) For any v̄ ∈ VL , let
v̄k = (Qk − Qk−1)v̄ for k = 0, . . . , L. Then v̄ = ∑L

k=0 v̄k is a stable decomposition
in the sense that

L∑

k=0

h̄−2
k ‖v̄k‖2 ! |v̄|21. (4.12)

We apply the slicing operator Ji−Ji−1 to this decomposition with v̄ = JN u ∈ VL .
If gi is the generation of bisection bi and k ≤ gi −1, then v̄k is piecewise linear in ωei

(the patch of refinement edge ei ) and (Ji − Ji−1)v̄k = 0 according to (4.9), because
Ji preserves piecewise linear functions. So the slicing operator detects frequencies
higher than or equal to gi , namely,

vi = (Ji − Ji−1)

L∑

l=gi

v̄l . (4.13)

Employing properties (4.8), (4.7) and (4.6), in this order, we infer that

‖vi‖2ω̃i
! hd

i

[
vi (pi )

2 + vi (pli )
2 + vi (pri )

2
]

!

∥∥∥∥∥∥

L∑

l=gi

v̄l

∥∥∥∥∥∥

2

ωi

,
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because the simplices used to define nonzero values of vi (pi ), vi (pli ) or vi (pri ) are
inside ωi according to (4.9). This explains why the domain of integration on the right-
hand side is ωi instead of ω̃i .

Since distinct bisections patches with the same generation are weakly disjoint
(Lemma 3.4), namely

◦
ωi ∩

◦
ω j= ∅ if gi = g j , we deduce

∑

gi =k

‖vi‖2 =
∑

gi =k

‖vi‖2ω̃i
!

∑

gi =k

∥∥∥∥∥∥

L∑

l=gi

v̄l

∥∥∥∥∥∥

2

ωi

≤
∥∥∥∥∥

L∑

l=k

v̄l

∥∥∥∥∥

2

!

=
L∑

l=k

‖v̄l‖2,

where in the last step we have used that {v̄l} are L2-orthogonal.
To proceed further we need the following elementary result, which can be found in

[25].

Lemma 4.3 (Discrete Hardy inequality) If the non-negative sequences {ak}L
k=0,

{bk}L
k=0 satisfy

bk ≤
L∑

l=k

al , for all k ≥ 0,

then for any s ∈ (0, 1) we have

L∑

k=0

s−kbk ≤
1

1− s

L∑

k=0

s−kak .

Proof Since

L∑

k=0

s−kbk ≤
L∑

k=0

L∑

l=k

s−kal =
L∑

l=0

l∑

k=0

s−kal =
L∑

l=0

s−lal

l∑

k=0

sl−k,

and s < 1, the geometric series is bounded by 1/(1 − s). This concludes the proof.
01

Applying Lemma 4.3 with s = γ = (1/2)1/d to ak = ‖v̄k‖2 and bk = ∑
gi =k ‖vi‖2,

and recalling that hk ≈ γ gk according to (3.8), we obtain

L∑

k=0

h̄−2
k

∑

gi =k

‖vi‖2 !
L∑

k=0

h̄−2
k ‖v̄k‖2,

and thus from the stable decomposition of Lemma 4.2 for uniform refinement, we
conclude

N∑

i=0

h−2
i ‖vi‖2 =

L∑

k=0

h̄−2
k

∑

gi =k

‖vi‖2 !
L∑

k=0

h̄−2
k ‖v̄k‖2 ! |JN u|21 ! |v|21. (4.14)

Finally, combining (4.11), (4.14) and invoking (4.3), we get the asserted estimate (4.4).
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Remark 4.4 (Space decompositions for traditional smoothing) Consider piecewise

linear finite element spaces, i.e. m = 1. If we define Ṽi = span{φi,q , q ∈ ωpi∩
◦

N
(Ti )} to be the space spanned by the hat basis functions associated with node pi and
all neighboring nodes, then in the construction of the quasi-interpolation operators
Ji we can always choose a simplex τp in the star of ωp for each vertex p, whence
the difference (Ji − Ji−1)u ∈ Ṽi and JN u = u. Consequently we can prove that
the space decomposition V = ∑N

i=0 Ṽi is stable. The corresponding subspace correc-
tion methods require smoothing in the new node and all neighboring nodes, but an
additional fine grid smoothing is not necessary.

Similarly for higher order elements, i.e. m ≥ 2, one can include all degrees of
freedom (dof) inside the bisection patch ωi into the subspace Ṽi and obtain a stable
decomposition. The corresponding local multigrid methods then require smoothing
on all dof inside ωi ; see [39].

4.2 Strengthened Cauchy–Schwarz inequality: proof of (1.7)

In this section we establish the strengthened Cauchy–Schwarz (SCS) inequality (1.7)
for the space decomposition

∑N
i=0 Vi . We first present a SCS inequality for uniform

refinement.

Lemma 4.5 (SCS inequality for quasi-uniform meshes; see Lemma 4.26 in [63]) For
any ui ∈ V i , v j ∈ V j , j ≥ i , we have

(ui , v j )A ! γ j−i |ui |1h−1
j ‖v j‖0,

where γ < 1 is a constant such that hi ! γ 2i .

Proof Let us first prove the inequality on one element τ ∈ Ti . Using integration by
parts, Cauchy–Schwarz inequality, and inverse inequality, we have
∫

τ

∇ui · ∇v j dx =
∫

∂τ

∂ui

∂n
v j ds ! ‖∇ui‖0,∂τ‖v j‖0,∂τ ! h−1/2

i ‖∇ui‖0,τ h−1/2
j ‖v j‖0,τ

!
(

h j

hi

)1/2

|ui |1,τ h−1
j ‖v j‖0,τ ! γ j−i |ui |1,τ h−1

j ‖v j‖0,τ .

Adding over τ ∈ Ti , and using Cauchy–Schwarz inequality again, yields

(∇ui ,∇v j ) =
∑

τ∈Ti

(∇ui ,∇v j )τ ! γ j−i h−1
j

∑

τ∈Ti

|ui |1,τ‖v j‖0,τ

! γ j−i h−1
j




∑

τ∈Ti

|ui |21,τ




1/2 


∑

τ∈Ti

‖v j‖20,τ




1/2

= γ j−i |ui |1h−1
j ‖v j‖0,

which is the asserted estimate. 01
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Theorem 4.6 (SCS inequality for graded meshes) For any ui , vi ∈ Vi , i = 0, . . . , N,
we have

∣∣∣∣∣∣

N∑

i=0

N∑

j=i+1

(ui , v j )A

∣∣∣∣∣∣
!

(
N∑

i=0

‖ui‖2A
)1/2 (

N∑

i=0

‖vi‖2A
)1/2

. (4.15)

Proof We resort to the concept of generation to rewrite several sums in terms of
uniform refinements. The proof is divided into four steps.

1. For a fixed index i ∈ [1, N ], we denote by

n(i) = { j > i :
◦
ω̃ j ∩

◦
ω̃i 7= ∅} and wi

k =
∑

j∈n(i),g j =k

v j .

We observe that wi
k ∈ Vk and k = g j ≥ gi − g0 whereas ui ∈ Vgi +g0 according to

Lemma 3.5. For any τ ⊂ ω̃i , we apply Lemma 4.5 over τ to ui and wi
k to obtain

(ui , w
i
k)A,τ ! γ k−gi ‖ui‖A,τ h̄−1

k ‖wi
k‖τ .

Then

(ui , w
i
k)A,ω̃i =

∑

τ⊂ω̃i

(ui , w
i
k)A,τ ! γ k−gi

∑

τ⊂ω̃i

‖ui‖A,τ h̄−1
k ‖wi

k‖τ

! γ k−gi ‖ui‖A,ω̃i h̄
−1
k




∑

τ⊂ω̃i

‖wi
k‖2τ




1/2

.

Since v j ’s with the same generation g j = k have supports supp v j ⊂ ω̃ j with finite
overlap (see Lemma 3.4), we infer that ‖wi

k‖2τ ! ∑
j∈n(i),g j =k ‖v j‖2τ ≤

∑
g j =k ‖v j‖2τ

and

(ui , w
i
k)A,ω̃i ! γ k−gi ‖ui‖A,ω̃i h̄

−1
k




∑

g j =k

‖v j‖20,ω̃i




1/2

.

2. We fix ui and consider

∣∣∣∣∣∣
(ui ,

N∑

j=i+1

v j )A

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(ui ,

∑

j∈n(i)

v j )A,ω̃i

∣∣∣∣∣∣

=

∣∣∣∣∣∣
(ui ,

L∑

k=gi−g0

∑

j∈n(i),g j =k

v j )A,ω̃i

∣∣∣∣∣∣
≤

L∑

k=gi−g0

∣∣∣(ui , w
i
k)A,ω̃i

∣∣∣ ,
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because (ui , v j ) = 0 for k = g j < gi−g0 (Lemma 3.5). Since k ≥ 0 and k ≥ gi−g0,
this is equivalent to k ≥ (gi − g0)

+ = max{gi − g0, 0}, whence

∣∣∣∣∣∣



ui ,

N∑

j=i+1

v j





A

∣∣∣∣∣∣
!

L∑

k=(gi−g0)+
γ k−gi ‖ui‖A,ω̃i h̄−1

k




∑

g j =k

‖v j‖20,ω̃i




1/2

.

3. We now sum over i but keeping the generation gi = l ≥ 0 fixed:

∑

gi =l

∣∣∣∣∣∣



ui ,

N∑

j=i+1

v j





A

∣∣∣∣∣∣
!

L∑

k=(l−g0)+
γ k−l

×






∑

gi =l



‖ui‖A,ω̃i



h̄−2
k

∑

g j =k

‖v j‖2ω̃i




1/2










!
L∑

k=(l−g0)+
γ k−l




∑

gi =l

‖ui‖2A,ω̃i




1/2

×



h̄−2
k

∑

gi =l

∑

g j =k

‖v j‖2ω̃i




1/2

.

In view of (3.11), due to the finite overlap property of patches ω̃i for generation gi = l,
we deduce

∑

gi =l

∣∣∣∣∣∣
(ui ,

N∑

j=i+1

v j )A

∣∣∣∣∣∣
!

L∑

k=(l−g0)+
γ k−l




∑

gi =l

‖ui‖2A,ω̃i




1/2 

h̄−2
k

∑

g j =k

‖v j‖2



1/2

.

4. We finally sum over all generations 0 ≤ l ≤ L to get

L∑

l=0

∑

gi =l

∣∣∣∣∣∣



ui ,

N∑

j=i+1

v j





A

∣∣∣∣∣∣
!

L∑

l=0

L∑

k=(l−g0)+
γ k−l




∑

gi =l

‖ui‖2A,ω̃i




1/2

×



h̄−2
k

∑

g j =k

‖v j‖2



1/2

!




L∑

l=0

∑

gi =l

‖ui‖2A,ω̃i




1/2 


L∑

k=0

h̄−2
k

∑

g j =k

‖v j‖2



1/2

,
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where we have used the estimate

n∑

i, j=1

γ |i− j |xi x j ≤
2

1− γ

(
n∑

i=1

x2
i

)1/2 (
n∑

i=1

y2
i

)1/2

∀(xi )
n
i=1, (yi )

n
i=1 ∈ Rn .

Since
∑N

i=0 = ∑L
l=0

∑
gi =l and h̄k = h j for k = g j , using the local norm equivalence

(4.3), we end up with the desired estimate (4.15). 01

Remark 4.7 (Traditional smoothers) A SCS inequality similar to (4.15) can be proved
for the slightly larger spaces Ṽi of Remark 4.4. Using the stable decomposition of
V = ∑N

i=0 Ṽi , we can prove that local multigrid methods with traditional smoothers
also converge uniformly for graded bisection meshes. 01

To apply the abstract convergence theory for SSC to the space decomposition
V = ∑

p∈$ Vp + ∑N
i=0 Vi , we still need to prove the following inequalities.

Theorem 4.8 (SCS between high frequency and multilevel decomposition) For any
vp ∈ Vp and ui ∈ Vi , we have

∣∣∣∣∣∣

∑

p∈$

N∑

i=0

(vp, ui )A

∣∣∣∣∣∣
!




∑

p∈$
‖vp‖2A




1/2 (

N∑

i=0

‖ui‖2A
)1/2

, (4.16)

and

∣∣∣∣∣∣

∑

p∈$

∑

q∈$,q>p

(u p, vq)A

∣∣∣∣∣∣
!




∑

p∈$
‖u p‖2A




1/2 


∑

q∈$
‖vq‖2A




1/2

, (4.17)

where we assume there is an ordering in the set $.

Proof By the Cauchy–Schwarz inequality and the finite overlap property of the stars
ωp, we deduce

∣∣∣∣∣∣

∑

p∈$

N∑

i=0

(vp, ui )A

∣∣∣∣∣∣
!

∑

p∈$



‖vp‖A

∥∥∥∥∥

N∑

i=0

ui

∥∥∥∥∥
A,ωp





!




∑

p∈$
‖vp‖2A




1/2 


∑

p∈$

∥∥∥∥∥

N∑

i=0

ui

∥∥∥∥∥

2

A,ωp




1/2

!




∑

p∈$
‖vp‖2A




1/2 ∥∥∥∥∥

N∑

i=0

ui

∥∥∥∥∥
A

.
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Combining this with the estimate

∥∥∥∥∥

N∑

i=0

ui

∥∥∥∥∥

2

A

=
(

N∑

i=0

ui ,

N∑

i=0

ui

)

A

≤
N∑

i=0

‖ui‖2A + 2

∣∣∣∣∣∣

N∑

i=0

N∑

j=i+1

(ui , u j )A

∣∣∣∣∣∣
!

N∑

i=0

‖ui‖2A,

we then get (4.16). The proof of (4.17) is simpler and follows from mesh shape regular-
ity. In fact, given p ∈ $, the cardinality of the set {q ∈ $ : q > p and ωp ∩ωp 7= ∅}
is uniformly bounded. 01

5 BPX preconditioner and multigrid on graded bisection grids

We apply PSC and SSC to the space decomposition

V =
∑

p∈$
Vp +

N∑

i=0

Vi , (5.1)

and thus obtain multilevel preconditioners and V-cycle multigrid methods on graded
bisection grids.

We first observe that we can use standard smoothers, e.g. Richardson, symmetric
Gauss-Seidal or Jacobi, for the nodal basis decomposition. Since dim Vi = 3, we have
a three-point local smoother for multilevel decomposition and the total computational
cost for subspace correction methods based on (5.1) is C N , with a relatively small
constant C . In addition, the three-point local smoother simplifies the implementation
of multilevel methods especially in dimensions higher than 2. For example, we only
need to maintain an ordered vertex array with two parent vertices rather than a tree
structure to store the hierarchical mesh structure.

BPX Preconditioner. We use the stable decomposition and SCS inequality to obtain
the optimality of the resulting preconditioner.

Theorem 5.1 (Optimality of BPX on graded bisection grids) If the preconditioner
B of (2.3) is based on the space decomposition (5.1) and SPD smoothers satisfying
(2.12), then we have

κ(B A) ! 1.

Proof Combine Theorems 4.1 and 4.6 with Theorem 2.4. 01

As mentioned above, standard smoothers such as Richardson, Jacobi, or symmetric
Gauss-Seidel iterations satisfy (2.12) and therefore we have uniform convergence of
PCG with additive preconditioner.

V-Cycle Multigrid. This method results from applying SSC to the space decomposi-
tion (5.1). A standard V-cycle loop reads as follows:
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1. pre-smoothing in the finest space V(Pm, TN );
2. multilevel smoothing in piecewise linear finite element spaces Vi for i = N to 1;
3. approximate solving in the coarsest piecewise linear finite element space V0;
4. multilevel smoothing in piecewise linear finite element spaces Vi for i = 1 to N ;
5. post-smoothing in the finest space V(Pm, TN ).

We remark that the smoothing in the finest space V(Pm, TN ) is crucial to take care
of high frequency modes which may not be seen by the multilevel splitting {Vi }N

i=1 of
piecewise linear finite element spaces; see (4.4).

Theorem 5.2 (Uniform convergence of V-cycle multigrid on graded bisection grids)
The above V-cycle multigrid, based on the space decomposition (5.1) with smoothers
satisfying the contraction property (T), is uniformly convergent.

Proof Combine Theorems 4.1 and 4.6 with Theorem 2.6. 01
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